Question 1 - Message Passing on an MRF grid

We wish to run message passing on a 4 -connected MRF grid. The joint distribution is defined as

$P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{Z} \exp \left(\sum_{i \in V} f_{i}\left(X_{i}\right)+\sum_{(i, j) \in E} f_{i j}\left(X_{i}, X_{j}\right)\right)$
where V and E are the set of nodes and the set of edges, respectively. To perform message passing, we build a cluster graph whose clusters are the nodes and the edges of the MRF graph. The cluster graph for a 3×3 subgrid (left) is shown below on the right. The sepsets are not shown. We assign the node potentials to the node clusters and edge potentials to edge clusters.

A) Show that the above cluster graph satisfies the Running Intersection Property.
B) Write down the formula for the sum-product messages below (in terms of $f_{a}\left(X_{a}\right)$,

$$
\begin{aligned}
& \left.f_{a c}\left(X_{a}, X_{c}\right) \text {,and other messages }\right) \\
& \delta_{a \rightarrow(a, c)}\left(X_{a}\right) \\
& \delta_{(a, c) \rightarrow a}\left(X_{a}\right)
\end{aligned}
$$

C) Write down the max-sum messages below

$$
\begin{aligned}
& \lambda_{a \rightarrow(a, c)}\left(X_{a}\right) \\
& \lambda_{(a, c) \rightarrow a}\left(X_{a}\right)
\end{aligned}
$$

D) [Wrong] Show that if $f_{i j}\left(X_{i^{\prime}} X_{j}\right)=1\left(X_{i}=X_{j}\right)$ for all i,j, then we have $\lambda_{(a, c) \rightarrow a}\left(X_{a}\right)=\max \left(0, \lambda_{c \rightarrow(a, c)}\left(X_{a}\right)\right)$.
where $\lambda_{c \rightarrow(a, c)}\left(X_{a}\right)$ is the message $\lambda_{c \rightarrow(a, c)}\left(X_{c}\right)$ evaluated at $X_{c}=X_{a}$.

Question 2 - Gibbs sampling

We intend to perform Gibbs sampling on the grid MRF defined in Question 1. Remember that the joint distribution was defined as

$P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{Z} \exp \left(\sum_{i \in V} f_{i}\left(X_{i}\right)+\sum_{(i, j) \in E} f_{i j}\left(X_{i} X_{j}\right)\right)$

To perform a single transition
$X_{1}{ }^{t}, X_{2}{ }^{t}, \ldots, X_{n}{ }^{t} \rightarrow X_{1}^{t+1}, X_{2}^{t+1}, \ldots, X_{n}^{t+1}$
of a Gibbs Markov chain each X_{i}^{t+1} is sampled from the distribution $R_{i}\left(X_{i}\right)$.
Notice that $R_{i}\left(X_{i}\right)$ is also a function of (a subset of) the variables
$X_{1}{ }^{t}, X_{2}{ }_{2}, \ldots, X_{n}{ }^{t}, X_{1}^{t+1}, X_{2}^{t+1}, \ldots, X_{n}^{t+1}$.
Assume that the nodes are sampled in the same order as their indices (shown in the above image), that is row-by-row, starting from top-left.
A) Derive $R_{1}\left(X_{1}\right)$.
B) Derive $R_{2}\left(X_{2}\right)$.
C) Derive $R_{8}\left(X_{8}\right)$.

Question 3 - Parameter Learning

Consider the following Bayes Net on binary variables $A, B, C \in\{0,1\}$, with CPDs defined as:
$P(A)=\alpha A+(1-\alpha)(1-A)$,
$P(B)=(1+B) / 3$,
$P(C \mid A, B)=\gamma 1(C=A+B)+(1-\gamma) 1(C \neq A+B)$.

A) Write down the log-likelihood function in terms of α and γ for the following data. Simplify your answer as much as possible. Notice that $P(C \mid A, B)$ has not been parameterized by table representation.

a^{i}	b^{i}	c^{i}
0	0	0
1	0	1
1	1	0
0	1	1
0	0	1
1	1	1

B) Write down the derivatives of the log-likelihood function with respect to α and γ. Find the optimal (maximum-likelihood) values of α and γ by setting the derivatives equal to zero.

