

Question 1 - Message Passing on an MRF grid

We wish to run message passing on a 4-connected MRF grid. The joint distribution is defined as

$$P(X_1, X_2, ..., X_n) = \frac{1}{Z} \exp(\sum_{i \in V} f_i(X_i) + \sum_{(i,j) \in E} f_{ij}(X_i, X_j))$$

where V and E are the set of nodes and the set of edges, respectively. To perform message passing, we build a cluster graph whose clusters are the nodes and the edges of the MRF graph. The cluster graph for a 3x3 subgrid (left) is shown below on the right. **The**

sepsets are not shown. We assign the node potentials to the node clusters and edge potentials to edge clusters.

- A) Show that the above cluster graph satisfies the Running Intersection Property.
- B) Write down the formula for the **sum-product** messages below (in terms of $f_a(X_a)$,

$$f_{ac}(X_a, X_c)$$
, and other messages)
 $\delta_{a \to (a,c)}(X_a)$
 $\delta_{(a,c) \to a}(X_a)$

C) Write down the max-sum messages below

- $\lambda_{a \to (a,c)}(X_a)$
- $\lambda_{(a,c) \to a}(X_a)$ D) [Wrong] Show that if $f_{ij}(X_i, X_j) = 1(X_i = X_j)$ for all i,j, then we have $\lambda_{(a,c) \to a}(X_a) = \max (0, \lambda_{c \to (a,c)}(X_a)).$

where $\lambda_{c \to (a,c)}(X_a)$ is the message $\lambda_{c \to (a,c)}(X_c)$ evaluated at $X_c = X_a$.

Question 2 - Gibbs sampling

We intend to perform Gibbs sampling on the grid MRF defined in Question 1. Remember that the joint distribution was defined as

$$P(X_1, X_2, ..., X_n) = \frac{1}{Z} \exp(\sum_{i \in V} f_i(X_i) + \sum_{(i,j) \in E} f_{ij}(X_i, X_j))$$

To perform a single transition $X_1^{t}, X_2^{t}, ..., X_n^{t} \rightarrow X_1^{t+1}, X_2^{t+1}, ..., X_n^{t+1}$ of a Gibbs Markov chain each X_i^{t+1} is sampled from the distribution $R_i(X_i)$. Notice that $R_i(X_i)$ is also a function of (a subset of) the variables $X_1^{t}, X_2^{t}, ..., X_n^{t}, X_1^{t+1}, X_2^{t+1}, ..., X_n^{t+1}$.

Assume that the nodes are sampled in the same order as their indices (shown in the above image), that is row-by-row, starting from top-left.

A) Derive $R_1(X_1)$. B) Derive $R_2(X_2)$. C) Derive $R_8(X_8)$.

Question 3 - Parameter Learning

Consider the following Bayes Net on binary variables $A, B, C \in \{0, 1\}$, with CPDs defined as:

 $\begin{array}{lll} P(A) &=& \alpha \, A \, + \, (1 - \, \alpha) \, (1 - A), \\ P(B) &=& (1 + B) \, / \, 3, \\ P(C \mid A, B) &=& \gamma 1 (C = A + B) \, + \, (1 - \gamma) \, 1 (C \neq A + B). \end{array}$

A) Write down the log-likelihood function in terms of α and γ for the following data. Simplify your answer as much as possible. Notice that $P(C \mid A, B)$ has not been parameterized by table representation.

a ⁱ	b^{i}	c ⁱ
0	0	0
1	0	1
1	1	0
0	1	1
0	0	1
1	1	1

B) Write down the derivatives of the log-likelihood function with respect to α and γ . Find the optimal (maximum-likelihood) values of α and γ by setting the derivatives equal to zero.